Man-made Surface Structures from Triangulated Point Clouds
نویسنده
چکیده
Man-made Surface Structures from Triangulated Point Clouds Photogrammetry aims at reconstructing shape and dimensions of objects captured with cameras, 3D laser scanners or other spatial acquisition systems. While many acquisition techniques deliver triangulated point clouds with millions of vertices within seconds, the interpretation is usually left to the user. Especially when reconstructing man-made objects, one is interested in the underlying surface structure, which is not inherently present in the data. This includes the geometric shape of the object, e.g. cubical or cylindrical, as well as corresponding surface parameters, e.g. width, height and radius. Applications are manifold and range from industrial production control to architectural on-site measurements to large-scale city models. The goal of this thesis is to automatically derive such surface structures from triangulated 3D point clouds of man-made objects. They are defined as a compound of planar or curved geometric primitives. Model knowledge about typical primitives and relations between adjacent pairs of them should affect the reconstruction positively. After formulating a parametrized model for man-made surface structures, we develop a reconstruction framework with three processing steps: During a fast pre-segmentation exploiting local surface properties we divide the given surface mesh into planar regions. Making use of a model selection scheme based on minimizing the description length, this surface segmentation is free of control parameters and automatically yields an optimal number of segments. A subsequent refinement introduces a set of planar or curved geometric primitives and hierarchically merges adjacent regions based on their joint description length. A global classification and constraint parameter estimation combines the data-driven segmentation with high-level model knowledge. Therefore, we represent the surface structure with a graphical model and formulate factors based on likelihood as well as prior knowledge about parameter distributions and class probabilities. We infer the most probable setting of surface and relation classes with belief propagation and estimate an optimal surface parametrization with constraints induced by inter-regional relations. The process is specifically designed to work on noisy data with outliers and a few exceptional freeform regions not describable with geometric primitives. It yields full 3D surface structures with watertightly connected surface primitives of different types. The performance of the proposed framework is experimentally evaluated on various data sets. On small synthetically generated meshes we analyze the accuracy of the estimated surface parameters, the sensitivity w.r.t. various properties
منابع مشابه
Fusion of LIDAR Data and Large-scale Vector Maps for Building Reconstruction
LIDAR data contains plenty of height information, while vector maps preserve accurate building boundaries. From the viewpoint of data fusion, we integrate LIDAR data and large-scale vector maps to perform building modeling. The proposed scheme comprises six major steps: (1) preprocessing of LIDAR data and vector maps, (2) extraction of point clouds that belong to a building, (3) construction of...
متن کاملMoving parabolic approximation model of point clouds and its application
We propose the moving parabolic approximation (MPA) model to reconstruct an improved point-based surface implied by an unorganized point cloud, while also estimating the differential properties of the underlying surface. We present examples which show that our reconstructions of the surface, and estimates of normal and curvature information, are accurate for precise point clouds and robust in t...
متن کاملDetection of some Tree Species from Terrestrial Laser Scanner Point Cloud Data Using Support-vector Machine and Nearest Neighborhood Algorithms
acquisition field reference data using conventional methods due to limited and time-consuming data from a single tree in recent years, to generate reference data for forest studies using terrestrial laser scanner data, aerial laser scanner data, radar and Optics has become commonplace, and complete, accurate 3D data from a single tree or reference trees can be recorded. The detection and identi...
متن کاملSurface Reconstruction with Sparse Point Clouds of Velodyner Sensor
Fast surface reconstruction from dense point clouds data(PCD) is a popular topic in robotics. However, it is still challenging to make large-scale surface maps with sparse PCD. This paper proposes a method to build surface maps using the PCD generated by velodyner HDL32E laser scanner, which is wildly used in automatic driving vehicles and wild exploring robots. Supervoxel clustering method is ...
متن کاملModeling of rapeseed at maturity stage using 3D unorganized point clouds and digital images
Creating 3D plant models is often a difficult and laborious task. To make it easier and more natural, the integration of digital images and 3D unorganized point clouds from a digitizer provides a promising approach for rapeseed model generation. In the present study, 3D unorganized point clouds and digital images were incorporated in the generation of complex models of rapeseeds at maturity sta...
متن کامل